Computer Technology + Software = Scientists Developing Robotic Hand of the Future

Researchers at Carlos III University of Madrid’s (UC3M) Robotics lab are participating in the international research project known as HANDLE. The objective of the project is to create a robotic hand that can reproduce the abilities and movements of a human hand in order to achieve the optimal manipulation of objects.

HANDLE is a large scale “Integrated Project” that is part of the Seventh European Framework Programme FP7; Spain is a participant in the project, whose goal is to reach an understanding of how humans manipulate objects in order to replicate its grasping and movement abilities in an artificial, anthropomorphic articulated hand, thus endowing it with greater autonomy and producing natural and effective movements. “In addition to the desired technological advances, we are working with basic aspects of multidisciplinary research in order to give the robotic hand system advanced perception capabilities, high level information control and elements of intelligence that would allow it to recognize objects and the context of actions,” explains the head researcher on the UC3M team working on this project, Mohamed Abderrahim, of the Madrid university’s Department of Systems Engineering and Automation.

His team has already gotten very good results, in his opinion, in the areas of visual perception, and cinematic and dynamic systems, which allow the system to recognize an object in its surroundings and pass the information on to the robotic hand’s planning and movement system.

The robotic hand that these researchers are working with is mostly made up of numerous high precision pieces of mechanized aluminum and plastic, as well as sensor and movement systems. In all, it has 20 actuators and can make 24 movements, the same as a human hand. Its size is also the same as that of an average adult male’s hand and it weighs approximately 4 kilograms. According to the partner in the project who manufactures the hand, the approximate cost of the version that is currently in development at UC3M comes to about 115,000 euros.

The problems involved in imitating a hand

When trying to recreate the movements of a human hand with a robotic system, there are several complex problems that must be resolved. In the first place, there is a lack of space. This is because “a human hand is incredibly complete, which makes it a challenge to try to put all of the necessary pieces into the robotic hand and to integrate all of the actuators that allow for mobility similar to that of a human hand,” comments Professor Mohamed Abderrahim. Second, another problem is that there are currently no sensors on the market that are small enough to be integrated into the device so that it can have sensitivity similar to that of a human hand and, thus, be able to make precise movements. Finally, although the researchers may manage to make a perfect robot from the mechanical and sensorial point of view, without intelligence elements the device will not be able to function autonomously nor adapt its movements and control to the characteristics of the objects, such as their geometry, texture, weight or use.

“It is not the same to take hold of a screwdriver to pass it to someone, or to put it away, as it is to use it, because in the last situation, it has to be reoriented in the hand until it is in the right position to be used. This position has to be decided by the intelligence part of the robotic hand,” the researchers say. “A robotic hand that is able to perform this seemingly simple task autonomously,” they say “only exists in science fiction movies.” “My personal estimation is that it will take around 15 years of research into these areas to build a robotic hand that is able to perform certain complex tasks with a level of precision, autonomy and dexterity that is similar to that of a human hand,” predicts Professor Abderrahim.

The research carried out by the HANDLE project’s partners has brought about results that are very interesting in the area of visual perception, motion planning, new sensors, acquisition of motor skills using artificial intelligence techniques, etc. Nevertheless, important challenges still remain when it comes to integrating the results obtained by all of the partners into a single system, which will be the result of the next two years of work.

HANDLE (Developmental pathway towards autonomy and dexterity in robot in-hand manipulation) is a Large Scale “Integrated Project” funded by the European Union within The Seventh Framework Programme FP7, in which nine European institutions, coordinated by the Pierre and Marie Curie University of Paris (France), participate.

Quick and Cheap Data Storage? New Multiferroic Material Is Both Electrically Charged and Magnetic

HZB scientists observe how a material at room temperature exhibits a unique property — a „multiferroic” material with potential uses for cheap and quick data storage.

Researchers at Helmholtz-Zentrum Berlin (HZB) in close collaboration with colleagues in France and UK, have engineered a material that exhibits a rare and versatile trait in magnetism at room temperature. It’s called a “multiferroic,” and it means that the material has properties allowing it to be both electrically charged (ferroelectric) and also the ability to be magnetic (ferromagnetic), with its magnetisation controlled by electricity.

This research was based around a material known as barium titanate (BaTiO3), a ferroelectric crystal that is promising to have potential uses in multi-state data storage while being cost effective. Their paper titled, “Interface-induced room-temperature multiferroicity in BaTiO3” appears now in Nature Materials.

“We’ve shown a way where you can obtain a multiferroic at room temperature,” said Sergio Valencia, post doc researcher at HZB, referring to the scarcity of room temperature examples. “Barium titanate is ferromagnetic, so it means you have a net-magnetic moment you can really control by an electric field. The idea is that you can apply a voltage to the ferroelectric reversing the ferroelectric polarization which in turn affects the magnetization of your film [BaTiO3].

You can use this for example to write bits of information in memories of computers by only applying voltages, which is much cheaper in terms of power than traditionally applying magnetic fields.”

It is this ability to control the material’s magnetism and to be able to do it at room temperatures which makes this multiferroic potentially more cost-effective compared to other current multiferroic materials, which require complex arrangements to work.

Finding these two traits of ferromagnetic and ferroelectric working together in a compound is tricky due to the strange love-hate relationship exhibited by the two phenomena. What a ferromagnetic requires to exist is not the same as what a ferroelectric requires. Yet strangely, the two compliment each other and share a strong relationship, where one affects the other. The scarcity of these multiferroics however, is a result of this unique phenomenon combined with the few naturally occurring examples. “They are scarce and the problem is that most of them are multiferroic only at very low temperatures,” added Valencia. “Therefore they are not useful for applications. If you have to go to -270 °C for a multiferroic then it’s really complicated and expensive to implement them in room temperature working devices.”

The researchers witnessed this multiferroic behaviour by investigating magnetic moments of Titanium (Ti) and Oxygen (O) atoms in BaTiO3 by using BESSY II synchrotron radiation source of Helmholtz-Zentrum Berlin.

They used a research method known as soft X-ray resonant magnetic scattering. The team was able to witness the dual traits of both ferroelectric and ferromagnetic in the thin films of BaTiO3. And since BaTiO3 is a non-magnetic ferroelectric material at room temperature, the ferromagnetism was induced by proximity to natural ferromagnets such as iron (Fe) and Cobalt (Co). In order to achieve these results the researchers deposited a ten atom thin film of iron and cobalt on top of a four atom thin BaTiO3 film. “These small thicknesses are indeed required for the implementation of such materials in devices to keep their small size,” added Valencia

“boy who scored a goal, and was shown Red Card with No Reason”_deadbj [Bijay Acharya]

Better ‘Photon Loops’ May Be Key to Computer and Physics Advances

Surprisingly, transmitting information-rich photons thousands of miles through fiber-optic cable is far easier than reliably sending them just a few nanometers through a computer circuit. However, it may soon be possible to steer these particles of light accurately through microchips because of research performed at the Joint Quantum Institute of the National Institute of Standards and Technology (NIST) and the University of Maryland, together with Harvard University.

The scientists behind the effort say the work not only may lead to more efficient information processors on our desktops, but also could offer a way to explore a particularly strange effect of the quantum world known as the quantum Hall effect in which electrons can interfere with themselves as they travel in a magnetic field. The corresponding physics is rich enough that its investigation has already resulted in three Nobel Prizes, but many intriguing theoretical predictions about it have yet to be observed.

The advent of optical fibers a few decades ago made it possible for dozens of independent phone conversations to travel long distances along a single glass cable by, essentially, assigning each conversation to a different color-each narrow strand of glass carrying dramatic amounts of information with little interference.

Ironically, while it is easy to send photons far across a town or across the ocean, scientists have a harder time directing them to precise locations across short distances-say, a few hundred nanometers-and this makes it difficult to employ photons as information carriers inside computer chips.

“We run into problems when trying to use photons in microcircuits because of slight defects in the materials chips are made from,” says Jacob Taylor, a theoretical physicist at NIST and JQI. “Defects crop up a lot, and they deflect photons in ways that mess up the signal.”

These defects are particularly problematic when they occur in photon delay devices, which slow the photons down to store them briefly until the chip needs the information they contain. Delay devices are usually constructed from a single row of tiny resonators, so a defect among them can ruin the information in the photon stream. But the research team perceived that using multiple rows of resonators would build alternate pathways into the delay devices, allowing the photons to find their way around defects easily.

As delay devices are a vital part of computer circuits, the alternate-pathway technique may help overcome obstacles blocking the development of photon-based chips, which are still a dream of computer manufacturers. While that application would be exciting, lead author Mohammad Hafezi says the prospect of investigating the quantum Hall effect with the same technology also has great scientific appeal.

“The photons in these devices exhibit the same type of interference as electrons subjected to the quantum Hall effect,” says Hafezi, a research associate at JQI. “We hope these devices will allow us to sidestep some of the problems with observing the physics directly, instead allowing us to explore them by analogy.”

Epson Korea hack impacts 350,000 customers


Epson Korea has been hit by a massive data breach, involving the personal information of 350,000 registered customers.

Hackers broke into Epson Korea’s computer systems, and stole information including passwords, phone numbers, names, and email addresses of customers who had registered with the company.

A warning message was posted to the Epson Korea website, and computer users who believe that may have been affected are advised to change their passwords as soon as possible.

Warning on Epson Korea website

Although you may not care very much if someone can log into your account at Epson, you certainly will care if they can also use the same password to access your other online accounts. Once again, we find ourselves having to reminder users to get into the habit of using different passwords for different websites.

Malicious hackers could clearly use the information they have stolen in targeted attacks against Epson customers, including spammed-out malware attacks (perhaps posing as driver updates for Epson products) or phishing campaigns. The fact that the hackers have their hands on other personal information belonging to Epson’s customers can make any such attack all the more believable.

The Epson data breach is the latest in a series of hard-hitting attacks to have struck South Korean internet users in recent months, the most notable being when a staggering 35 million social networking users had their personal information stolen last month.

Hackers deface Libya’s top level domain registry with anti-Gadaffi message logo

With heavy fighting reaching the compound of Libyan leader Colonel Gadaffi, hackers have also taken virtual arms overnight and defaced the website of domain name registry

Hackers calling themselves “Electr0n” have defaced the website, the main registry which administers .ly domain names (the “.ly” stands for “Libya”) and replaced it with a defiant message: defaced website

[+] HACKED By Electr0n[+]
|~| ali monder |~|

bye bye Qadaffi
Feb 17 Libya

Greetz to
Dr.exe | Qnix | Rock-Master | LoverBoy | r1z
And All Muslim Hackers 🙂

The date February 17th relates to when Libyan protesters began their demonstrations only to be shot upon by security forces loyal to Colonel Gadaffi.

Perhaps the most famous site to use the .ly country code as as their top level domain is the url shortening service. Companies which have .ly country codes in their domain name do not appear to been impacted by the hack, which seems to just be a defacement of the main page.

Bikini-clad women and photo tags aid Facebook scammers

If you’re a Facebook user, please repeat after me:

Facebook doesn't let you track who is viewing your profile.

Third-party Facebook apps aren't allowed to do it either, and if they claim to offer the ability they are banned from Facebook.

Don’t believe me? Here is the official word on the issue from Facebook itself:

Facebook statement

And yet, we continue to see scams spread far and wide across Facebook claiming to offer the functionality.

See this example, for instance, which tags a photograph of a woman sunbathing in her bikini with the names of Facebook users.

Bikini-wearing woman profile view Facebook scam

Because the photograph has been tagged with the names of Facebook users, they will see it appear in their newsfeed and will – no doubt – be curious to find out more.

Profile view scam

A comment on the photograph claims to point to a way for Facebook users to see who has been viewing their profile. The girl in the bikini was being used as tempting bait, just to bring traffic towards that link.

(You’re probably thinking by now – wouldn’t it be nice if Facebook gave its users the ability to opt-out of all photo tagging? Of choosing to never want to be tagged in a photo without their permission? And yes, it would be a very good idea – but Facebook seems less than keen to implement it).

If you’re foolhardy enough to click on the link, you are taken through the process of adding a third party application – handing it the keys, effectively, to your profile and authorising it to post messages, photos and notes to your Facebook wall.

Rogue Facebook application

Of course, if you give it such permission it will simply perpetuate the scam – spreading it onto your friends using your and their names.

The purpose of all this subterfuge? To trick you into taking an online survey – which earns commission for the scammers.

Survey Scam

Remember – you should always think twice (and maybe three times!) before allowing an application to access your Facebook profile, as there are many rogue apps designed purely to make money for the scammers and spread their viral schemes to as many users as possible.

Photo tagging pictures of women wearing bikinis isn’t the only way that the scammers bring traffic to their campaigns, of course. They still find old faithfuls, such as viral status messages, an effective means to spread enticing news of a way to view who has been viewing your profile.

Here’s just such a scam spreading on Facebook as I write:


WOW l cant believe that u can see who ls viewing your profile! l just checked my TOP profile visitors and l am SHOCKED at who ls still checking my profile! You can also see WHO VIEWED YOUR PROFILE here: [LINK]

4 Tips for Keeping in Touch With Your College Student (Without Being Overbearing)

College Laptop

Hundreds of thousands of young people are heading off to college this time of year. Unlike previous generations, today’s students will not have to completely bid farewell to their parents — they can remain in constant contact with mom and dad through text messaging, email, FacebookTwitterFoursquareGoogle+Skype, and a variety of other social platforms.

College is a time to explore, build relationships, discover new things and ultimately grow as a person. Through technology, today’s parents have the unique opportunity to remain connected to their offspring and experience some of the special day-to-day moments in their kids’ collegiate lives. Taken a step too far though, this sustained connection can annoy a student or even cripple his or her ability to develop into an independent, fully-functioning adult.

The number of parents connecting with their college-aged kids via social media has increased so rapidly in recent years that sites like Oh Crap! My Parents Joined Facebook emerged, along with parody videos like The Onion’s “Facebook, Twitter revolutionizing the ways that parents stalk their college-aged kids.”

Here are some guidelines for effectively using technology to communicate with your college student without being overbearing.

1. Let Your Student Set Some Ground Rules

Staying in touch with your son or daughter via social media can be a great way to offer support at a distance, as well as pick up on any danger signs (such as depression or drug abuse). But your ability to have this connection is ultimately dependent on your student’s level of comfort inviting you into his or her social world.

One college student might happily accept his mom as a Facebook friend and even encourage her to connect with his friends, while another would be mortified to know his mom is scoping out tagged photos from last weekend’s fraternity party. Every parent/child dynamic is different. That’s why it’s important to talk with your student and let her set some ground rules for your social media connection. Together, determine which platforms you should use to stay in touch. Find out whether she’s comfortable with you commenting on photos and wall posts. Familiarize yourselves with privacy settings, which offer significant control to students who wish to selectively share content with parents.

How Speech Recognition Is Changing Our World [INFOGRAPHIC]

Speech-recognition technology is making the world more accessible. Not only is it changing the way we use computers, but it is making our cellphones more useful and making our comes more connected.

Speech recognition still has a long ways to go, though. As Google will tell you, speech-recognition technology is challenging and complicated to implement. There are a lot of steps between you reciting a sentence and the computer or phone writing those words out on the screen.

To better explain the science and impact of automated speech recognition (ASR), Medical Transcription has created an infographic that goes through the technology behind ASR. It also explores some of the most interesting ASR projects in development.

How has speech recognition changed how you live and work? Let us know in the comments.INFOGRAPHICS

Google Adds Friend Annotations to the +1 Button

Google is making the +1 button more social with the addition of friend annotations.

“You may have already noticed faces and names when you hover over a +1 button,” Google Developer Advocate Timothy Jordan said in a post on the Google+ Platform preview. “This change rolled out late last week. Now, you can make these recommendations even more visible to your users. Simply update the +1 button code, and an inline annotation will show next to the button.”

The new annotations appear when a user hovers over the +1 button. Hovering over it will display a list of friends and contacts that have already clicked the +1 button for that page. Google has also unveiled new code for the +1 button that will display the faces and names of friends that have used the +1 button. This feature works much like how the Facebook Like button appears for Mashable stories, displaying how many people have +1′d the page and which friends have +1′d it.

The changes are small, but they will likely make the +1 button even more sticky. The search giant will need to do more though to compete with Facebook’s button, which has become standard on millions of websitesacross the world.